Raman-active phonons in $\mathrm{La}_{4} \mathrm{BaCu}_{5} \mathrm{O}_{13}$: polarized Raman spectroscopy and lattice dynamical calculations

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1995 J. Phys.: Condens. Matter 74967
(http://iopscience.iop.org/0953-8984/7/25/019)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.151
The article was downloaded on 12/05/2010 at 21:33

Please note that terms and conditions apply.

Raman-active phonons in $\mathrm{La}_{4} \mathrm{BaCu}_{5} \mathrm{O}_{13}$: polarized Raman spectroscopy and lattice dynamical calculations

M V Abrashev and V N Popov
Faculty of Physics, Sofia University, BG-1126 Sofia, Bulgaria

Received 14 February 1995, in final form 3 May 1995

Abstract

Polarized Raman spectra of the perovskite-like compound $\mathrm{L}_{2} \mathrm{BaCus}_{5} \mathrm{O}_{13}$ were measured and the symmetry of the observed lines was determined. A calculation of the Ramanactive phonon modes $\left(10 \mathrm{~A}_{g}+10 \mathrm{~B}_{g}+5 \mathrm{E}_{g}\right)$ within a shell model was additionally used to support the mode assignment and to obtain the ionic vibrational patterns. The observed and calculated frequencies were also compared with the available data for similar structures.

1. Introduction

$\mathrm{La}_{4} \mathrm{BaCu}_{5} \mathrm{O}_{13}$ is an ordered oxygen-deficient perovskite first reported by Michel and coworkers [1]. Its structure is tetragonal, space group $\mathrm{P} 4 / \mathrm{m}\left(\mathrm{C}_{4 h}^{1}\right), a=8.6475 \AA \approx a_{p} \sqrt{5}$, $c=3.8594 \AA \approx a_{p}$ [2]. The La and Ba atoms are located in an ordered manner. The oxygen vacancies are ordered in chains along the c axis. The $\mathrm{Cu}_{5} \mathrm{O}_{13}$ framework consists of corner sharing CuO_{5} pyramids and CuO_{6} octahedra (see figure 1). Each octahedral chain is surrounded by four pyramidal chains. An interesting feature of the structure is that each two adjacent pyramids in the $a b$ plane are oriented perpendicular one to another, i.e. an O3 oxygen atom (see table 1) is an apex one for one of the pyramids but a basal one for the other. The oxygen absorption-desorption studies [1,3] have shown that the oxygen stoichiometry is unusually stable in both air and oxygen atmospheres up to the synthesis temperature ($\approx 1000^{\circ} \mathrm{C}$). The metastable phases $\mathrm{La}_{4} \mathrm{BaCu}_{5} \mathrm{O}_{13-x}(x=0.5,1,2)$ were obtained after annealing in He or $\mathrm{H}_{2} / \mathrm{Ar}$ atmospheres [3]. $\mathrm{La}_{4} \mathrm{BaCu}_{5} \mathrm{O}_{13}$ exhibits metallic conductivity of the same order of magnitude as that of the high- T_{c} superconductors in the normal state, but it is not superconducting down to $1.3 \mathrm{~K}[1,4,5]$. Electronic structure calculations [6] suggest that the band structure near the Fermi level is 3D rather than 1D. However, no studies on monocrystals have been made up to now to verify the latter suggestion. Recently, a disordered cubic perovskite ($a=3.877 \AA$) with the same chemical content and metallic properties has been stabilized in the form of a thin film by laser ablation [7].

In this paper we present polarized Raman spectra and lattice dynamical calculations for the Raman-active phonons of $\mathrm{La}_{4} \mathrm{BaCu}_{5} \mathrm{O}_{13}$. The frequencies and vibrational patterns in this structure are discussed, exploring the similarity of the environment of the atoms in this compound and similar layered cuprates.

2. Experimental

To prepare $\mathrm{La}_{4} \mathrm{BaCu}_{5} \mathrm{O}_{13}$ samples the starting components $\left(\mathrm{La}_{2} \mathrm{O}_{3}, \mathrm{BaCO}_{3}\right.$ and CuO$)$ were mixed in appropriate ratios and prefired in air at $900^{\circ} \mathrm{C}$ for 15 h . The resulting material was

Figure 1. The structure of $\mathrm{La}_{4} \mathrm{BaCu}_{5} \mathrm{O}_{13}$. The c axis is perpendicular to the sheet. The black circles are Ba atoms, the gray ones are La atoms. The copper-oxygen sublattice is presented in the form of corner-sharing octahedra and pyramids. To emphasize the chained ordering of the building units more than one unit cell ($2 a \times 2 b \times 3 c$) is shown.

Table 1. Normal modes in $\mathrm{La}_{4} \mathrm{BaCu}_{5} \mathrm{O}_{13}$.

Atom	Wickoff notation	Site symmetry	Normal modes	Remark
Ba	1d	C_{4}	$\mathrm{A}_{u}+\mathrm{E}_{u}$	
La	4k	C_{s}	$2 \mathrm{~A}_{g}+\mathrm{A}_{u}+2 \mathrm{~B}_{g}+\mathrm{B}_{u}+\mathrm{E}_{g}+2 \mathrm{E}_{u}$	
Cul	1 a	$\mathrm{C}_{4!}$	$\mathrm{A}_{u}+\mathrm{E}_{u}$	octahedral
Cu 2	4 j	C_{5}	$2 \mathrm{~A}_{g}+\mathrm{A}_{u}+2 \mathrm{~B}_{g}+\mathrm{B}_{u}+\mathrm{E}_{g}+2 \mathrm{E}_{u}$	$\mathrm{E}_{u} \quad$ pyramidal
01	1 b	$\mathrm{C}_{4 k}$	$\mathrm{A}_{u}+\mathrm{E}_{u}$	oct.oct.
03	4 j	C_{5}		$\mathrm{E}_{\text {u }} \quad$ pyr.-pyr. 'apex'
O4	4j	C_{5}	$2 \mathrm{~A}_{g}+\mathrm{A}_{u}+2 \mathrm{~B}_{g}+\mathrm{B}_{u}+\mathrm{E}_{g}+2 \mathrm{E}_{u}$	E_{u} oct-pyr.
O5	4 k	Cs,	$2 \mathrm{~A}_{g}+\mathrm{A}_{u}+2 \mathrm{~B}_{g}+\mathrm{B}_{u}+\mathrm{E}_{g}+2 \mathrm{E}_{u} \quad$ p	$\mathrm{E}_{\mu} \quad$ pyr.-pyr. 'basal*
	Activity		Selection rules for the Raman-active modes	Symmetry-allowed directions of vibrations
Raman	$10 \mathrm{~A}_{g}+10 \mathrm{~B}_{g}+5 \mathrm{E}_{g}$			
Infrared	$7 \mathrm{~A}_{u}+12 \mathrm{E}_{u}$		$\mathrm{A}_{g} \rightarrow \alpha_{x x}+\alpha_{y y}, \alpha_{z z}$	in $a b$ plane
Acoustic	$\mathrm{A}_{\mu}+\mathrm{E}_{\mu}$		$\mathbf{B}_{g} \rightarrow \alpha_{x x}-\alpha_{y y}, \alpha_{x y}$	in $a b$ plane
Silent	$5 \mathrm{~B}_{4}$		$\mathrm{E}_{g} \rightarrow \alpha_{x z}, \alpha_{y z}$	along c axis

ground and annealed at $950^{\circ} \mathrm{C}$ for 20 h , then reground, pressed into 1 g pellets and annealed at $980^{\circ} \mathrm{C}$ for 50 h . Half of the samples were rapidly quenched to room temperature. The remaining samples were slowly cooled to room temperature for 12 h .

The cell parameters as determined from the x-ray powder diffractogramms (Co $\mathrm{K} \alpha$ radiation, URD-6 powder diffractometer) are close to other published data [1-3, 8]. For
the slowly cooled samples $a=8.650(1) \AA, c=3.862(3) \AA$, and for the rapidly quenched samples $a=8.662(3) \AA, c=3.868(3) \AA$.

Careful observation of the surface of the polished sample through an optical microscope under polarized white light showed that (1) the ceramics are of single phase and consist of microcrystals of square and elongated form (depending on their orientation) with dimensions up to $80 \times 30 \mu \mathrm{~m}$, and (2) the microcrystals are optically anisotropic and their colour changes from white to dark yellow, for light polarized perpendicular and parallel to the c axis, respectively.

The Raman spectra were measured at room temperature using a triple multichannel spectrometer Microdil 28 (DLOR) equipped with an optical microscope. A $100 \times$ objective was used to focus the incident laser beam in a spot of about $1 \mu \mathrm{~m}$ in diameter on the surface of the microcrystals and to collect the backward-scattered light. Both 514.5 nm and $488.0 \mathrm{~nm} \mathrm{Ar}{ }^{+}$laser lines were used for excitation. To avoid overheating of the samples the laser power was kept below 2 mW .

3. Results and discussion

The classification of the normal modes in the Γ-point of the Brillouin zone is presented in table 1. The Raman-active modes belong to three symmetry species: $\mathrm{A}_{g}, \mathrm{~B}_{g}$ and E_{g}. Their corresponding Raman tensors have different nonzero components and in order to identify the Raman line symmetries it is sufficient to obtain polarized Raman spectra from two types of crystal surfaces: those containing the c axis and those perpendicular to the c axis. Microcrystals exhibiting these two types of surfaces can easily be distinguished on the polished surface of the pellet. First, the microcrystals are elongated along the c axis. Second, due to their optical anisotropy upon observation of the surface with a crossed polarizer and analyser and when the sample is rotated, the colour of the (001) surfaces remains dark whereas the colour of the ($m n 0$) surfaces changes to the highest degree from dark to light every 45°. The dark colour corresponds to polarization along the c axis and in the $a b$ plane. The polarized Raman spectra obtained from a ($m n 0$) surface (containing the c axis) are presented in figure 2. In the $y(z x) \bar{y}$ spectra (using Porto's notation, z is the direction along the c axis, x and y are two arbitrary perpendicular directions in the $a b$ plane) only E_{g} lines may be observed, in the $y(z z) \bar{y}$ spectra only A_{g} lines may be observed, and in the $y(x x) \bar{y}$ spectra A_{g} as well as B_{g} lines may be observed. A_{g} and B_{g} lines can be determined from their different appearance in the spectra obtained from a (001) surface (see figure 3; the angle between $x(y)$ and $x^{\prime}\left(y^{\prime}\right)$ directions is 45°). The A_{g} lines can be observed only in parallel ($x x, y y, x^{\prime} x^{\prime}$ and $y^{\prime} y^{\prime}$) polarizations, whereas the B_{g} lines can be observed in parallel as well as in crossed ($x y$ or $x^{\prime} y^{\prime}$) polarizations. The frequencies and symmetries of all observed lines are given in table 2.

It has already been noted that the cell parameters of the two types of sample are slightly different. The increase of the volume of the cell is connected with the decrease of its oxygen content (see [3]). In the Raman spectra of some layered cuprates (for example, $\mathrm{Nd}_{2} \mathrm{CuO}_{4-y}$ and $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\delta}$) defect modes with an intensity comparable to that of the rest modes have been observed due to the oxygen nonstoichiometry. In our case the Raman spectra obtained from the two types of samples were identical. This fact gives us the confidence to state that all observed lines originate from symmetry-allowed modes. The only exception is the line at $99 \mathrm{~cm}^{-1}$, which appears always in crossed polarization and does not depend on the orientation of the crystal surface. We attribute it to the Raman scattering from air.

The calculations of the lattice dynamics of $\mathrm{La}_{4} \mathrm{BaCu}_{5} \mathrm{O}_{13}$ were made using a shell model [9]. This model properly accounts for the predominant ionic character of the cuprates

Table 2. Experimental and calculated frequencies (in cm^{-1}) of the Raman-active modes in $\mathrm{La}_{4} \mathrm{BaCu}_{5} \mathrm{O}_{13}$.

A_{s}			$\mathrm{B}_{\boldsymbol{g}}$			E_{8}		
$\nu_{\text {exp }}$	$v_{\text {calc }}$	Atoms	$\nu_{\text {exp }}$	$\nu_{\text {calc }}$	Atoms	$\nu_{\text {exp }}$	$\nu_{\text {calc }}$	Atoms
-	531	04	570	568	03	575	578	05
486	511	03	-	491	04	371	387	03
478	468	03	471	474	05,04,03	306	313	04
402	400	OS	410	398	05	157	156	Cu 2
339	337	05,04,03	307	343	05,04,03	-	114	La
267	271	04	299	298	03,04			
235	200	Cu2,03	223	216	Cu2,04,03			
-	182	La,03,Cu2	168	188	La, 03,Cu2,05			
155	166	Cu2,03	144	142	Cu 2			
-	64	Cu 2 La	126	111	La			

describing the interionic interactions via long-range Coulomb potentials and short-range ones, here chosen to be of Born-Mayer-Buckingham form:

$$
\begin{equation*}
V=a \exp (-b r)-\frac{c}{r^{6}} \tag{3.1}
\end{equation*}
$$

Here a, b and c are parameters, and r is the interionic distance. The ionic polarizability α is also included in the model considering that each ion (with charge Z) consists of a charged core surrounded by a charged shell (with charge Y). The model parameters are often transferred from other substances, whose lattice dynamics has been well studied. Such an approach reduces the ambiguity in the parameter set and leads to plausible predictions. Here the initial values of the parameters (see table 3) are taken from previous studies of a number of layered copper oxides [9]. The obtained model is stable everywhere in the Brillouin zone. In order to get better correspondence of the calculated 03 and $04 \mathrm{E}_{g}$ modes with the observed ones, the charge $Y_{O 4}$ was altered to -2.00 , while α_{03} and α_{04} were assumed to be anisotropic with values as large as $5.00 \dot{\AA}^{3}$ in the c direction. It is worth mentioning that such a correction was also necessary for the apex oxygen ions in $\mathrm{La}_{2} \mathrm{CuO}_{4}$ (see for example [11]). The calculated frequencies are compared with the experimental ones in table 2. It is difficult to describe the pattern of some of the modes, especially some of the A_{g} and B_{g} ones, as more than one kind of atom vibrates and the directions of atomic displacements are rather arbituary with respect to the crystal axes and the interatomic bonds. Therefore only the atoms participating in the modes are indicated in table 2.

Table 3. Shell model parameters for $\mathrm{L}_{24} \mathrm{BaCu}_{5} \mathrm{O}_{13}$.

Ion	$Z(\|e\|)$	$Y(\|e\|)$	$\alpha\left(\dot{A}^{3}\right)$	Ionic pair	$a(\mathrm{eV})$	$b\left(\AA^{-1}\right)$	$c\left(\mathrm{eV} \AA^{6}\right)$
La	2.85	1.70	0.7	$\mathrm{La}-\mathrm{O}$	1498	2.622	0.0
Ba	1.90	3.00	3.6	$\mathrm{Ba}-\mathrm{O}$	814	2.326	0.0
Cu	1.90	3.00	1.3	$\mathrm{Cu}-\mathrm{O}$	1500	3.553	0.0
O	-1.90	-3.00	2.0	$\mathrm{O}-\mathrm{O}[10]$	22764	6.711	20.37

Before discussing the modes, it is necessary to emphasize the similarity of the structure of $\mathrm{La}_{4} \mathrm{BaCu}_{5} \mathrm{O}_{13}$ with that of $\mathrm{RBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-8}(\mathrm{R}=\mathrm{Y}$, rare earth), known in short as $\mathrm{R}-1237$. The disposition of each two pyramids with parallel bases and an R-layer between them is

Figure 2. Polarized Raman spectra obtained from a (mn0) microcrystal surface (the c axis parallel to it). The cross polarized spectrum is multiplied by two. x and y are two arbitrary directions in the $a b$ plane. $\lambda_{L}=488.0 \mathrm{~nm}$.
the same as in $\mathrm{R}-1237$. Thus, the modes of the O 5 and Cu 2 atoms will be similar to modes of $\mathrm{O} 2(\mathrm{O} 3)$ and Cu 2 atoms in $\mathrm{R}-1237$. Comparing the modes of the O 3 'apex' atom with their counterparts of the O 4 'apex' atom in R -1237 is complicated, because in our structure the 03 atom is one of the oxygens from the base of the pyramid.

As follows from the lattice dynamical calculations, all E_{g} modes are pure (i.e. in each mode predominantly only one kind of atom participates). We assign the line at $575 \mathrm{~cm}^{-1}$ to the stretching vibration of O along the c axis. Its analogues in $\mathrm{Y}-1237$ are the $\mathrm{B}_{2 g}$ mode of O 2 and the $\mathrm{B}_{3 g}$ mode of O 3 observed at $579 \mathrm{~cm}^{-1}$ and $526 \mathrm{~cm}^{-1}$, respectively [12]. The decrease in the frequency of these vibrations correlates with the increase of the $\mathrm{Cu}-\mathrm{O}$ distance. In $\mathrm{Y}-1237$ the $\mathrm{Cu} 2-\mathrm{O} 2$ distance is $1.929 \AA$, in $\mathrm{Cu} 2-03$ it is $1.962 \AA$ [13], while the Cu2-O5 distance in our structure is $1.935 \AA$ [2]. The other two high-frequency \mathbf{E}_{g} lines at $371 \mathrm{~cm}^{-1}$ and $306 \mathrm{~cm}^{-1}$ are assigned to the bending vibrations along the c axis of 03 and O 4 atoms, respectively. The closest in pattern vibration in $\mathrm{Y}-1237$ is the $\mathrm{B}_{3 g}$ mode of

Figure 3. Polarized Raman spectra obtained from a (001) microcrystal surface. The symmetries of the lines are indicated. $\lambda_{L}=488.0 \mathrm{~nm}$.
the O 4 'apex' atom observed at $303 \mathrm{~cm}^{-1}$ [12]. Although the distances from the O 3 (O 4 in $\mathrm{Y}-123$) to the nearest Cu atoms are very close ($2.272 \AA$ and $1.880 \AA$ in $\mathrm{La}_{4} \mathrm{BaCu}_{5} \mathrm{O}_{13}$ [2] and $2.289 \AA$ and $1.859 \AA$ in $Y-1237$ [13]) the difference between their frequencies is $68 \mathrm{~cm}^{-1}$. The reason probably is the different heavy atom environment of the two 'apex' atoms: 2 La and 2 Ba for $\mathrm{La}_{4} \mathrm{BaCu}_{5} \mathrm{O}_{13}$ and 4 Ba in $\mathrm{Y}-1237$. The last observed E_{8} line at $157 \mathrm{~cm}^{-1}$ originates from the Cu 2 vibration along the c axis (in the basal plane of the pyramids). The corresponding $B_{2 g}$ and $B_{3 g}$ modes of Cu2 in R-1237 have been observed at $142 \mathrm{~cm}^{-1}$ and $140 \mathrm{~cm}^{-1}$ for $\mathrm{Y}-1237$ [12] and $134 \mathrm{~cm}^{-1}$ for $\mathrm{Pr}-1237$ [14].

Some of the modes with A_{g} and B_{g} symmetry also have analogues in R-1237. We assign the A_{g} line at $402 \mathrm{~cm}^{-1}$ and the B_{8} line at $410 \mathrm{~cm}^{-1}$ to the 05 vibration in the $a b$ plane parallel to the pyramid's base. Their analogue in Pr-1237 is the $\mathrm{B}_{2 g}$ mode of the O 2 atom observed at $408 \mathrm{~cm}^{-1}$ [14]. Further, we assign the $155 \mathrm{~cm}^{-1}$ and $144 \mathrm{~cm}^{-1}$ lines to the A_{g} and B_{g} modes corresponding to Cu 2 vibrations perpendicular to the pyramid's base. In R-1237 these modes correspond to the well studied A_{g} line whose frequency varies
from $140-150 \mathrm{~cm}^{-1}$ depending on the type of the rare earth and the oxygen stoichiometry. There are two other specific vibrations related to the four oxygen atoms in the base of the pyramid. These are the so-called 'in-phase' and 'out-of-phase' vibrations perpendicular to the pyramids' bases. In the case of $\mathrm{R}-1237$ they are of A_{g} symmetry ($\mathrm{A}_{1 g}$ and $\mathrm{B}_{1 g}$ in tetragonal R-1236) and have been observed at about $440 \mathrm{~cm}^{-1}$ and between $297-340 \mathrm{~cm}^{-1}$ (varying the rare earth from La to Lu) [15]. In our case the base of each pyramid consists of two O 5 , one O 4 and one O 3 atoms. The lattice dynamical calculations show the existence of two such modes (in our case of B_{g} symmetry) with frequencies of $474 \mathrm{~cm}^{-1}$ and $343 \mathrm{~cm}^{-1}$, respectively. We assign the experimentally observed $471 \mathrm{~cm}^{-1}$ and $307 \mathrm{~cm}^{-1}$ lines to these modes.

The rest A_{g} and B_{g} modes in $\mathrm{La}_{4} \mathrm{BaCu}_{5} \mathrm{O}_{13}$ are specific for this structure. The calculations have given for the two high-frequency A_{g} (breathing for octahedral chains) and B_{g} (antisymmetric stretching) modes of 04 the frequencies of $531 \mathrm{~cm}^{-1}$ and $491 \mathrm{~cm}^{-1}$, but no lines of corresponding symmetry and close frequencies have been observed in the Raman spectra. The $486 \mathrm{~cm}^{-1}\left(\mathrm{~A}_{g}\right), 478 \mathrm{~cm}^{-1}\left(\mathrm{~A}_{g}\right)$ and $570 \mathrm{~cm}^{-1}\left(\mathrm{~B}_{g}\right)$ lines originate from vibrations of the O 3 atoms. The $267 \mathrm{~cm}^{-1}\left(\mathrm{~A}_{g}\right)$ and $299 \mathrm{~cm}^{-1}\left(\mathrm{~B}_{g}\right)$ lines can be assigned to librational modes of the octahedral and the pyramidal chains, respectively. An interesting mode with A_{g} symmetry (O 4 and O 5 in-phase, O 3 out-of-phase) similar to the two mixed $03, \mathrm{O} 4, \mathrm{O} 5$ bending B_{g} modes is represented by the $339 \mathrm{~cm}^{-1} \mathrm{~A}_{\mathrm{g}}$ line. All the rest modes below $250 \mathrm{~cm}^{-1}$ (excluding the two above-mentioned Cu 2 modes) are strongly mixed, and it is difficult to describe their vibrational patterns.

Acknowledgments

We thank L N Bozukov for the x-ray measurements and M N Iliev for a critical reading of the manuscript. The technical help of L Georgieva is highly appreciated. This work was supported in part by grants Nos F 410 and F 423 of the Bulgarian National Foundation for Science.

References

[1] Michel C, Er-Racho L and Raveau B 1985 Mat. Res. Bull. 20667
[2] Michel C, Er-Racho L, Hervieu M, Pannetier J and Raveau B 1987 J. Solid State Chem. 68143
[3] Davies P K and Katzan C M 1990 J. Solid State Chem. 88368
[4] Torrance J B, Tokura Y, Nazzal A and Parkin S S P 1988 Phys. Rev. Lett. 60542
[5] Tamegai T and lye Y 1989 Physica 159C 181
[6] Herman F, Kasowski R V and Hsu W Y 1988 Phys. Rev. B 372309
[7] Desfeux R, Hamet J F, Mercey B, Simon C, Herveu M and Raveau B 1994 Physica 221C 205
[8] Wong-Ng W, Kuchinski M A, McMurdie H F and Paretzkin B 1989 Powder Diffr. 446
[9] Popov V N 1995 J. Phys.: Condens. Matter 71625
[10] Catlow C R A, Mackrodt W C, Norgett M I and Stoneham A M 1977 Phil. Mag. 35177
[11] Mostoller M, Zhang J, Rao A M and Eklund P C 1990 Phys. Rev. B 416488
[12] McCarty K F, Liu J Z, Shelton R N and Radousky H B 1990 Phys. Rev. B 418792
[13] Sharma R P, Rotella F J, Jorgensen J D and Rehn L E 1991 Physica 174C 409
[14] Humlicek J, Litvinchuk A P, Kress W, Lederle L, Thomsen C, Cardona M, Habermayer H U, Trofimov I E and König W 1993 Physica 206C 345
[15] Rosen H J, Macfarlane R M, Engler E M, Lee V Y and Jacowitz R D 1988 Phys, Rev, B 382460

